Abstract

Circular dichroism (CD) is a signal that characterizes the optical properties of chiral structures. Structures with intense CD signals have valuable applications in molecular chemistry, pharmaceuticals, and biosensing. This work proposes the use of a nanowire to increase the CD signal of crossed nanorods. The separation of resonant wavelengths of transmission under left-handed and right-handed circular polarization incidence (LCP and RCP) increases because the electric interaction between the upper nanorod and nanowire under LCP incidence is different from that under RCP incidence. The increased separation of resonant wavelengths, in turn, enhances the CD signals. In addition, two new CD modes appear, and these modes can be tuned by changing the structural parameters of the proposed structure. The present results will guide the design of plasmonic chiral nanostructures for enhancing the CD signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.