Abstract

A plasmonic chiral structure, which is a nanostructure composed of noble metals that lacks planar symmetry, demonstrates significant potential for various applications in bio-sensing, optical forces, switching and controlling the photoluminescence, and detecting chiral light. Understanding its fundamental property of circular dichroism (CD) is critical for these applications. Although the surface plasmon resonance (SPR) mode at a specific moment can explain the CD properties of chiral structures, to gain a better understanding of chirality, the mode shape of the SPR on a nanostructure must be analyzed throughout an entire period. Our study proposes an X-shaped nanostructure to investigate the temporal evolution of plasmon resonance in chiral structures. The simulation results demonstrated that our structure exhibited a significant temporal evolution in plasmonic oscillations, providing new insights into the nature of chirality. In addition, we provided a comprehensive theoretical explanation of CD using the Born–Kuhn model. Furthermore, we discovered that the CD in the X-shaped structure was intensified by the asymmetric interference between the structure and underlying gold film substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call