Abstract

Circular dichroism (CD) is originally obtained from three-dimensional spiral structures by simultaneously exciting electric and magnetic resonances. To simplify construction, multilayer stacked asymmetric structures and the symmetric structures relying on oblique incidence are proposed for enhancing CD. Herein, we achieved the enhancement of dual-waveband CD by adding a Ge2Sb2Te5 (GST) layer on the top of a Z-shape gold array in a normally incident system. Benefited from the polarization selective excitations of electric and magnetic dipole resonances, the CD in a simple planar structure is immensely enhanced from near zero to 0.73 at 1.58 µm. Furthermore, the CD strengths is dynamically tuned by controlling the phase of GST. With the GST phase transition from amorphous (a-GST) to crystalline state (c-GST), CD magnitudes are switched by about 0.73 and 0.27 at dual wavebands respectively. The enhancement of CD by adding a layer on a simple planar array offers a new method for designing planar metasurfaces with strong chirality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call