Abstract

In human cartilage tissue engineering, three-dimensional zirconia substrata have the potential advantage of producing many uniform cell clusters of controlled size without xenobiotic material, allowing easy clinical application. The objective of this study was to evaluate the possibility of using zirconia porous three-dimensional microwell substrata for chondrogenic differentiation of equine bone marrow-derived mesenchymal stem cells (BMMSCs) in vitro. In regular medium, 8 × 105, 2 × 106, and 5 × 106 equine BMMSCs from five thoroughbred horses were cultured on zirconia microwell substrata for 4 days to allow formation of clusters. The medium was replaced by chondrogenic culture medium. After chondrogenic culture for 7, 14 and 21 days, analysis of collagen type II alpha 1 gene (COL2A1) gene expression and observation of chondrogenic aggregates by scanning electron microscopy (SEM) were performed. SEM showed size-controlled cell clusters and increasing extracellular matrix over time when using 5 × 106 cells. The expression of COL2A1 on day 7 and 14 with 5 × 106 cells was significantly higher than that of conventional pellet culture with 2 × 106 cells. Histological evaluation by immunohistochemical staining for type II collagen (ColII) was performed after chondrogenic culture for 7 days. The clusters showed wide distribution of ColII. The results suggest that the zirconia substrata have the potential to enhance the chondrogenic differentiation of equine BMMSCs, allowing effective equine cartilage tissue engineering without xenobiotic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.