Abstract

Chlorination, one of the most common oxidation strategies, performed limited degradation capacity towards many emerging organic contaminants under neutral pH conditions. In this study, 2,2′-azinobis(3-ethylbenzothiazoline)-6-sulfonate (ABTS) was discovered to possess an outstanding activation property towards free available chlorine (FAC) during the chlorination of diclofenac (DCF) among pH 6.0–9.5. ABTS radical (ABTS•+) primarily accounted for the elimination of DCF in the ABTS/FAC system, although hydroxyl radicals, reactive chlorine species, and singlet oxygen were also generated via the self-decomposition of FAC. ABTS acted as the electron shuttle to degrade DCF in the ABTS/FAC system, where ABTS was firstly oxidized by FAC to ABTS•+ via single electron transfer, and followed by the elimination of DCF with the generated ABTS•+. Eight DCF degradation intermediates were identified by LC/Q-TOF/MS, and four DCF degradation pathways were proposed. Real water bodies, humic acid, and the coexistent anions of Cl−, HCO3−, NO3−, and SO42− performed negligible influence on DCF removal in ABTS/FAC system. ABTS/FAC system was much superior to sole chlorination in terms of toxicity reduction and anti-interference capacity. Overall, this study innovatively introduced ABTS as the electron shuttle to enhance the oxidative capacity of FAC under neutral pH conditions and provided a new insight that the ABTS-like organic/synthetic components might play an important role in degrading emerging organic contaminants by chlorination in water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call