Abstract

Chiro-sensitive molecular detection is highly relevant as many biochemical compounds, the building blocks of life, are chiral. Optical chirality is conventionally detected through circular dichroism (CD) in the UV range, where molecules naturally absorb. Recently, plasmonics has been proposed as a way to boost the otherwise very weak CD signal and translate it to the visible/NIR range, where technology is friendlier. Here, we explore how dielectric nanoresonators can contribute to efficiently differentiate molecular enantiomers. We study the influence of the detuning between electric (ED) and magnetic dipole (MD) resonances in silicon nanocylinders on the quality of the CD signal. While our experimental data, supported by numerical simulations, demonstrate that dielectric nanoresonators can perform even better than their plasmonic counterpart, exhibiting larger CD enhancements, we do not observe any significant influence of the optical chirality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.