Abstract

Ultrasmall-sized platinum nanoparticles (Pt NPs) (∼1 nm) supported on carbon nanotubes (CNTs) with nitrogen doping and oxygen functional groups were synthesized and applied in the catalytic hydrogenation of nitroarenes. The advanced identical location transmission electron microscopy (IL-TEM) method was applied to probe the structure evolution of the Pt/CNT catalysts in the reaction. The results indicate that Pt NPs supported on CNTs with a high amount of nitrogen doping (Pt/H-NCNTs) afford 2-fold activity to that of Pt NPs supported on CNTs with oxygen functional groups (Pt/oCNTs) and 4-fold to that of the commercial Pt NPs supported on active carbon (Pt/C) catalyst toward nitrobenzene. The catalytic performance of Pt/H-NCNTs remained constant during four cycles, whereas the activity of the Pt/oCNTs was halved at the second cycle. Compared with Pt/oCNTs, Pt/H-NCNTs exhibited a higher selectivity (>99%) in chemoselective hydrogenation of halonitrobenzenes to haloanilines due to the electron-rich chemical ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call