Abstract

Mesoporous silica SBA-15-supported bimetallic silver–nickel catalysts (Ag–Ni/SBA-15) were prepared by a co-impregnation method for the chemoselective hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG). The structure and physicochemical properties of the catalysts were characterized using N2 adsorption–desorption, X-ray fluorescence spectroscopy, transmission electron microscopy, H2-temperature-programmed reduction, UV–vis light diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, fourier-transform infrared spectroscopy and ester temperature-programed desorption. Compared with monometallic Ag or Ni catalyst, the bimetallic Ag–Ni/SBA-15 catalysts exhibited enhanced catalytic performance for the chemoselective hydrogenation of DMO to MG. The optimized Ag–Ni/SBA-15 catalyst with a Ni/Ag atomic ratio of 0.2 presented the highest MG yield and excellent catalytic stability during the hydrogenation of DMO to MG for longer than 140h. The characterization results suggested that the Ag and Ni bimetallic nanoparticles on the catalyst surfaces likely formed a segregation structure with more Ni species in the core and more Ag in the shell, and electron transfer from Ni to Ag possibly occurred. The interactions between the Ag and Ni species generated more active/adsorption sites and prevented the transmigration of bimetallic nanoparticles during hydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.