Abstract
BackgroundChemiluminescence (CL) analysis, characterized by its simple instrumentation, high signal-to-noise ratio, wide linear range, and minimal background interference, has garnered increasing attention from researchers. Nanomaterials (NMs) have been explored to enhance CL intensity. Notably, sub-1 nanometer scale NMs are considered to hold significant untapped potential due to their size effects. The application of these sub-1 nanometer NMs in enhancing CL is anticipated to yield favorable results. Additionally, the low water solubility and bioavailability of quercetin glycosides lead to their presence in bodily fluids at only trace levels, highlighting the urgent need for efficient and rapid detection methods. ResultsIn this work, phosphomolybdic acid (PMA) was incorporated into CuO to synthesize sub-1 nanometer CuO-PMA nanosheets (SNSs) using a cluster-core co-assembly strategy. Conformational and structural characterization confirmed the successful synthesis of these nanosheets. The CuO-PMA SNSs were employed to enhance the CL emission of the luminol-H2O2 system, resulting in an increase of over 1000 times. The catalytic properties of CuO-PMA SNSs significantly facilitated the decomposition of H2O2, leading to an enhanced production of reactive oxygen species, which in turn induced the CL enhancement. Given that the antioxidant effect of quercetin would consume the reactive oxygen species generated during the catalysis, a decrease in CL intensity was anticipated. A CL sensor for quercetin detection was developed based on the CuO-PMA SNSs-luminol-H2O2 system, demonstrating a strong linear relationship (R2 = 0.9969) and a low detection limit of 0.31 nM. SignificanceThis research provides a strategy to enhance the CL intensity of the luminol-H2O2 system by using CuO-PMA SNSs, offering a highly sensitive assay for detecting quercetin concentrations. The method is characterized as a simple and cost-effective analytical strategy making CL analysis very attractive for chemical analysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.