Abstract

The integration of ternary metal oxides into carbon materials is anticipated to significantly boost the electrochemical performance of supercapacitor electrodes. This article synthesized carbon nanotubes (CNT)/(NiMn)Co2O4 composite materials using a straightforward hydrothermal method and subsequently prepared composite thin films of CNT/P-(NiMn)Co2O4@NGQD by phosphating and incorporating nitrogen-doped graphene quantum dots (NGQD). These films served as the functional electrode material for supercapacitors, enhancing their performance capabilities. The specific capacity of CNT/P-(NiMn)Co2O4@NGQD was measured at 2172.0 F g−1 at a current density of 1 A g−1, maintaining a capacitance of 1954.0 F g−1 at 10 A g−1, thus demonstrating excellent rate performance. Electrochemical impedance spectroscopy (EIS) further revealed enhancements in electrolyte flow dynamics and capacitance behavior post-NGQD introduction. The energy density of the composite material reached 94.4 Wh kg−1 at power density of 800 W kg−1, demonstrating superior electrochemical performance. The enhancement in these electrochemical properties is attributed to the high specific surface area and active sites of CNT/P-(NiMn)Co2O4@NGQD films, along with the synergistic effects of NGQD and metal ions facilitating rapid electrons and charge transfer. This work provides new insights into developing high-performance supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.