Abstract

Confining blended poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester organic solar cell active layers within nanometer-scale cylindrical pores nearly double the supported short-circuit photocurrent density compared to equivalent unconfined volumes of the same blend and increases the poly(3-hexylthiophene) hole mobility in the blend by nearly 500 times. Grazing incidence x-ray diffraction measurements show that the confinement changes the polymer orientation distribution, suppressing low charge conductivity orientations while simultaneously disrupting polymer ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.