Abstract
Although significant effort has been expended to analyze the binding of pyrene in β-cyclodextrin and γ-cyclodextrin, little has been published on the binding of this guest in β-cyclodextrin derivatives (methyl-β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin) or in mixtures of such derivatives, despite the fact that these derivatives are known to have different supramolecular properties that facilitate unique modes of complexation. Reported herein is a detailed spectroscopic investigation of the binding of pyrene in β-cyclodextrin derivatives and in binary mixtures of cyclodextrins. Py values, defined as the ratio of representative vibronic bands in the fluorescence emission of pyrene, were used to measure changes in the pyrene microenvironment in the presence of the cyclodextrin hosts, and indicated that unmodified β-cyclodextrin is unique in providing a fully hydrophobic environment for pyrene through the use of two cyclodextrins to bind a single pyrene guest. By comparison, both γ-cyclodextrin and modified β-cyclodextrin analogues bind pyrene in a less hydrophobic environment through 1:1 binding stoichiometries that allow for continued interactions between the incompletely encapsulated pyrene guest and the aqueous solvent system. Binary mixtures of cyclodextrins were also explored and reinforce the unique properties of the unmodified β-cyclodextrin host. Graphical Abstract The unique binding geometries of pyrene in beta-cyclodextrin and its derivatives leads to measurable fluorescence emission signals, whose information can be used to elucidate the highly structurally dependent binding geometries and stoichiometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.