Abstract

BackgroundLignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, “absent technological breakthroughs”, it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold.ResultsWe have increased the cellulosic ethanol yield from switchgrass by 2.6-fold through overexpression of the transcription factor PvMYB4. This strategy reduces carbon deposition into lignin and phenolic fermentation inhibitors while maintaining the availability of potentially fermentable soluble sugars and pectic polysaccharides. Detailed biomass characterization analyses revealed that the levels and nature of phenolic acids embedded in the cell-wall, the lignin content and polymer size, lignin internal linkage levels, linkages between lignin and xylans/pectins, and levels of wall-bound fucose are all altered in PvMYB4-OX lines. Genetically engineered PvMYB4-OX switchgrass therefore provides a novel system for further understanding cell wall recalcitrance.ConclusionsOur results have demonstrated that overexpression of PvMYB4, a general transcriptional repressor of the phenylpropanoid/lignin biosynthesis pathway, can lead to very high yield ethanol production through dramatic reduction of recalcitrance. MYB4-OX switchgrass is an excellent model system for understanding recalcitrance, and provides new germplasm for developing switchgrass cultivars as biomass feedstocks for biofuel production.

Highlights

  • Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels

  • PvMYB4 overexpression in switchgrass Previously generated PvMYB4-over-expressing (PvMYB4OX) transgenic switchgrass lines (1A, 1B, 1C, 1D, 1E, 2A and 2B) were in the Alamo ST2 genetic background [12], and additional lines were constructed in Alamo ST1 (Additional file 1: Figure S1a)

  • Our results demonstrate that an alternative approach, the overexpression of a general transcriptional repressor of the phenylpropanoid/lignin biosynthesis pathway, can reduce carbon flux into the lignin biosynthetic pathway and produce a bioenergy crop with reduced cell wall recalcitrance, slightly increased polysaccharide content and reduced levels of phenolic fermentation inhibitors

Read more

Summary

Introduction

Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. Bioethanol from cellulosic feedstocks such as corn stover, switchgrass or wood chips, is a promising renewable and clean energy source, with the potential to reduce greenhouse gas emissions by up to 86% compared with gasoline [1]. Ethanol production from lignocellulosic materials faces more challenges than from starchbased feedstocks as a result of the chemical and physical barriers that block accessibility to the sugars (so-called recalcitrance) within the biomass. Reduction of sinapyl monolignol production may increase concentrations of fermentation inhibitors [10], and low molecular weight phenolic compounds in COMT down-regulated switchgrass inhibit simultaneous saccharification and fermentation (SSF) by the yeast Saccharomyces cerevisiae unless first removed by hot water pretreatment [11]. A better strategy for reducing recalcitrance is required for the development of improved lignocellulosic bioenergy feedstocks

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call