Abstract

In many practical applications of robot path planning, finding the shortest path is critical, while the response time is often overlooked but important. To address the problems of search node divergence and long calculation time in the A* routing algorithm in the large scenario, this paper presents a novel center constraint weighted A* algorithm (CCWA*). The heuristic function is modified to give different dynamic weights to nodes in different positions, and the node weights are changed in the specified direction during the expansion process, thereby reducing the number of search nodes. An adaptive threshold is further added to the heuristic function to enhance the adaptiveness of the algorithm. To verify the effectiveness of the CCWA* algorithm, simulations are performed on 2-dimensional grid maps of different sizes. The results show that the proposed algorithm speeds up the search process and reduces the planning time in the process of path planning in a multi-obstacle environment compared with the conventional A* algorithm and weighted A* algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.