Abstract

The combination of nanosecond Pulsed Electric Field (nsPEF) with pharmaceuticals is a pioneering therapeutic method capable of enhancing drug uptake efficacy in cells. Utilizing nsPEFs configured at 400 pulses, an electric field strength of 15 kV/cm, a pulse duration of 100 ns, and a repetition rate of 10 pulses per second (PPS), we combined the nsPEF with a low dose of doxorubicin (DOX) at 0.5 μM. Upon verifying that cells could continuously internalize DOX from the surrounding medium within 1 h post nsPEF exposure, we set the DOX exposure period to 10 min and contrasted the outcomes of varying sequences of DOX and nsPEF administration: pulsing followed by DOX, DOX followed by pulsing, and DOX applied 40 min after pulsing. Flow cytometry, CCK-8 assays, and transmission electron microscopy (TEM) were employed to examine intracellular DOX accumulation, cell viability, apoptosis, cell cycle, and ultrastructural transformations. Our findings demonstrate that exposing cells to DOX 40 min subsequent to nsPEF treatment can effectively elevate intracellular DOX levels, decrease cell viability, and inhibit the cell cycle. This research work presents a novel approach to enhance DOX uptake efficiency with moderate conditions of both DOX and nsPEF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call