Abstract

BackgroundHybridization is a useful strategy to bond the advantages of different peptides into novel constructions. We designed a series of AMPs based on the structures of a synthetic AMP KFA3 and a naturally-occurred host defense peptide substance P (SP) to obtain peptides retaining the high antibacterial activity of KFA3 and the immunomodulatory activity and low cytotoxicity of SP. MethodsTwo repeats of KFA and different C terminal fragments of SP were hybridized, generating a series of novel AMPs (KFSP1–8). The antibacterial activities, host cell toxicity and immunomodulation were measured. The antibacterial mechanisms were investigated. ResultsHybrid peptides KFSP1–4 exerted substantial antibacterial activities against Gram-negative bacteria of standard strains and clinical drug-resistant isolates including E.coli, A.baumannii and P.aeruginosa, while showing little toxicity towards host cells. Compared with KFA3, moderate reduction in α-helix content and the interruption in α-helix continuality were indicated in CD spectra analysis and secondary-structure simulation in these peptides. Membrane permeabilization combined with time-kill studies and FITC-labeled imaging, indicated a selective membrane interaction of KFSP1 with bacteria cell membranes. By specially activating NK1 receptor, the hybrid peptides kept the ability of SP to induce intracellular calcium release and ERK1/2 phosphorylation, but unable to stimulate NF-κB phosphorylation. KFSP1 facilitated the survival of mouse macrophage RAW264.7, directly interacting with LPS and inhibiting the LPS-induced NF-κB phosphorylation and TNF-α expression. ConclusionHybridization is a useful strategy to bond the advantages of different peptides. KFSP1 and its analogs are worth of advanced efforts to explore their potential applications as novel antimicrobial agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.