Abstract

We present enhanced cell ingrowth and proliferation through cross-linked three-dimensional (3D) nanocomposite scaffolds fabricated using poly(propylene fumarate) (PPF) and hydroxyapatite (HA) nanoparticles. Scaffolds with controlled internal pore structures were produced from computer-aided design (CAD) models and solid freeform fabrication (SFF) technique, while those with random pore structures were fabricated by a NaCl leaching technique for comparison. The morphology and mechanical properties of scaffolds were characterized using scanning electron microscopy (SEM) and mechanical testing, respectively. Pore interconnectivity of scaffolds was assessed using X-ray microcomputed tomography (micro-CT) and 3D imaging analysis. In vitro cell studies have been performed using MC3T3-E1 mouse preosteoblasts and cultured scaffolds in a rotating-wall-vessel bioreactor for 4 and 7 days to assess cell attachment, viability, ingrowth depth, and proliferation. The mechanical properties of cross-linked nanocomposite scaffolds were not significantly different after adding HA or varying pore structures. However, pore interconnectivity of PPF/HA nanocomposite scaffolds with controlled pore structures has been significantly increased, resulting in enhanced cell ingrowth depth 7 days after cell seeding. Cell attachment and proliferation are also higher in PPF/HA nanocomposite scaffolds. These results suggest that cross-linked PPF/HA nanocomposite scaffolds with controlled pore structures may lead to promising bone tissue engineering scaffolds with excellent cell proliferation and ingrowth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.