Abstract

Semiconductors are important materials used for the development of high-performance biomedical devices. Gallium nitride (GaN) is a well-known III-nitride semiconductor with excellent optoelectronic properties as well as high chemical stability and biocompatibility. The formation of tight interfaces between GaN substrates and cells would be crucial for GaN-based devices used for probing and manipulating biological processes of cells. Here we report a strategy to greatly enhance cell adhesion and survival on nanotextured GaN surface which was treated by UV illumination and fibronectin (FN) adsorption. Cell studies showed that the UV/FN treatment greatly enhanced cell adhesion and growth on nanotextured GaN surfaces. These observations suggest new opportunities for novel nanotextured GaN-based biomedical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.