Abstract

We address the enhanced bone growth on designed nanocrystalline zirconia implants as reported by in vivo experiments. In vitro experiments demonstrate that the activation of adhesive proteins on nanoengineered zirconia stimulates cell adhesion and growth as shown by confocal microscopy. Fibrillar fibronectin (FN) forms a matrix assembly on the nanostructured surface in the cell adhesion process. We discuss the importance of FN dimer activation due to its immobilization on the designed nanocrystalline ZrO2 implant fabricated by ion beam assisted deposition. The Monte-Carlo analysis indicates that FN activation on the surface can be promoted by selective electrostatic interactions between negatively charged ZrO2 surface patches and oppositely charged FN domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.