Abstract
The achievement of modern medicine is due to development and extensive use of indwelling biomedical devices like urinary catheters, heart valves, Vascular bypass grafts, ocular lenses and artificial joints, among others. Untreated nosocomial infections due to urinary catheter- biofilms pose great health risk to patients. This study focuses on the isolation, molecular identification, antibiotic susceptibility profiling and physicochemical characterization of strong biofilm producers from indwelling urinary catheters. Out of 34 isolates 19 strong biofilm producers were segregated using Microtitre plate and Congo red agar methods. Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Morganella morganii and Enterococcus faecalis, which are common causative agents of Catheter-Associated Urinary Tract Infection (CA-UTI) were identified by molecular characterization and phylogenetic analyses. All strong biofilm formers were multi drug resistant by modified Kirby- Bauer method and Multiple Antibiotic Resistance (MAR) index was also calculated Further physicochemical characterization included hydrophobicity and autoaggregation assays. All the strong biofilm producers exhibited multiple antibiotic resistance. More than 60 per cent of the selected strains were strongly hydrophobic. No significant connection between autoaggregation and hydrophobicity was observed. All the characteristics of these strains including biofilm formation, multiple antibiotic resistance, hydrophobicity and auto aggregation abilities made them strong candidates for CA-UTI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.