Abstract

Electrochemiluminescence (ECL) behavior of luminol derivative was investigated in reduction on different electrode materials. We found that luminol and its widely used L-012 derivative, emitting at physiological pH values, exhibit strong cathodic ECL emission on iron and stainless steel electrodes with hydrogen peroxide, whereas no ECL signal was observed with other classic electrode materials (Au, Pt, and C). On a Ni electrode, a low cathodic ECL signal was observed. This points out to the essential role of iron-containing materials to enhance the cathodic ECL emission. Under the reported conditions, the cathodic ECL signal of L-012 is comparable to the classically used anodic ECL emission. Thus, dual bright ECL emissions with L-012 were obtained simultaneously in oxidation and in reduction on iron materials as imaged in a wireless bipolar electrochemistry configuration. Such an ECL system generating light emission concomitantly in oxidation and in reduction is extremely rare and it opens appealing (bio)analytical and imaging applications, in biosensing, remote detection, bipolar ECL analysis, and ECL-based cell microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.