Abstract

An efficient and robust bimetallic catalyst has been developed for the transfer hydrogenation of biomass derived ethyl levulinate to γ-valerolactone with 2-butanol as the hydrogen donor. Several bimetallic catalysts were prepared and characterized by Brunauer–Emmett–Teller, transmission electron microscopy, X-ray power diffraction and X-ray photoelectron spectrometry. They exhibited different catalytic activities in the catalytic transfer hydrogenation (CTH) reaction. Results showed that 10Cu-5Ni/Al2O3 had the highest activity, providing a 97% yield of GVL product in 12 h at 150 °C. The reaction temperature, reaction time and catalyst loading were also investigated and found to affect the product yield. The catalyst was also successfully applied to the CTH of various levulinate esters with different secondary alcohols. Comparing experiments between Cu–Ni and Cu catalysts and the poisoning experiments revealed that the introduction of Ni to Cu remarkably enhanced the catalyst’s activity and stability, showing an outstanding recycling ability in the 10 runs recycling experiments without notable loss in the activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call