Abstract

The development of catalysts with high selectivity, good catalytic activity, and excellent cycle performance is of significance for the application of formic acid (HCOOH, FA) as a hydrogen support. Herein, Pd is deposited on a series of N-doped carbons, which are prepared by cocarbonization of N-containing zeolite imidazole frameworks (ZIF-8) and other N/C sources (melamine, xylitol, urea, and glucose), for hydrogen generation from FA. The results demonstrate that the introduction of a secondary N/C source further affects the catalytic performance of Pd by adjusting the morphology, specific surface area, N content, and type of carbon. The effects of N atoms and the favorable reaction pathways of FA dehydrogenation were revealed by theoretical calculation. This work will improve the understanding of N doping on the decomposition mechanism of FA and provide a new approach for the rational design of metal-N-C materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.