Abstract

AbstractOxygen defect engineering is a reliable and efficient approach to modulate the electronic structure of metal oxides for the improvement of catalytic efficiency. In this work, carbon nitride supported titanium dioxide nanoparticle, with the space group of I41/amd, was prepared using a high temperature synthesis route. Transmission electron microscope study revealed that titanium dioxide particle were dispersed uniformly on the carbon nitride network. The X-ray photoelectron spectroscopy analysis predicted the formation of oxygen defects in the matrix of titanium oxide, and it also indicated the presence of titanium ions with mixed valence states. The synthesized hybrid system was evaluated as an electrocatalyst for the electrochemical detection of epinephrine using cyclic voltammetric and square wave voltammetric techniques. A custom-made device was also fabricated using synthesized hybrid material for the purpose of evaluating the electrochemical sensing of epinephrine in a pharmaceutical sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call