Abstract

Surfactant-modified CeO2@TiO2 core–shell nanostructure catalysts were prepared by coprecipitation with the addition of sodium dodecyl sulfonate (SDS), and their catalytic oxidation of dichloromethane (DCM) was studied. A 90% DCM conversion efficiency is obtained at 300 °C with the CeO2@TiO2SDS catalyst, and its catalytic stability in the 55 h test period is better than that of Ce/TiO2 and CeO2@TiO2. Based on the characterization of CeO2@TiO2SDS, the dispersion of active components is promoted due to the inhibition of crystal growth with the introduction of SDS. The improvement of surface acidity and redox capacity is beneficial to the enhancement of catalytic activity. The higher adsorbed oxygen content on the surface of the CeO2@TiO2SDS catalyst is responsible for the better catalytic stability. Generally, a novel method was developed to design catalytic oxidation catalysts for the treatment of chlorinated volatile organic compounds in future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.