Abstract

The hydrolysis of ammonia borane (NH3BH3, AB) is an efficient strategy for high-purify hydrogen evolution. However, it is indispensable to develop a suitable catalyst because this reaction is kinetically infeasible at room temperature. In this work, we prepared a series of nano hexagonal boron nitride (h-BN) supported CuNi bimetallic catalysts through a facile adsorption-chemical reduction procedure. The effects of various molar ratios of Cu to Ni and CuNi loadings on AB hydrolysis were investigated in details. Benefitting from the proper porous structure, the interesting alloy effect of Cu and Ni, as well as the synergistic effect between h-BN and CuNi, 20 wt% Cu0.5Ni0.5/h-BN displays the highest catalytic activity among the as-prepared catalysts. Apart from satisfactory durability, the corresponding hydrogen generation rate, turnover frequency at 303 K in base solution and apparent activation energy are 2437.0 mL g−1 min−1, 6.33 min−1 and 23.02 kJ mol−1, respectively, which are very outstanding compared with many previous results. Our work not only provides a proper non-precious metal catalyst for hydrogen generation from the hydrolysis of chemical hydrogen storage materials but also offers a facile strategy for synthesizing metallic functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.