Abstract

Immobilized cobalt nanoparticles on SiO2 reduced via hydrogenation–carburization–hydrogenation (HCH) afforded a 40% higher CO conversion compared to the standard H2 treatment. The HCH treatment increased the catalyst reducibility and the dispersion of Co-hcp, with a high intrinsic activity for Fischer–Tropsch synthesis (FTS), via the Co2C intermediate. It is postulated that the Co2C was responsible for the high CH4 and olefin selectivity observed over the HCH treated sample, which resulted in a detrimental effect on the selectivity of liquid fuels. Nonetheless, this is a groundbreaking contribution to future FTS catalyst design and for synthetic fuel production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call