Abstract

In this work, NdFeO3 nanoparticles were synthesized through a simple co-precipitation method. The formation of NdFeO3 particles was verified by X-ray powder diffraction, infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy analysis. Polyaniline and chitosan were employed as proper support for production of metal nanoparticles. Novel Pt-NFO/PA-CH nanocomposite was fabricated by immobilization of Pt nanoparticles on the PA-CH support in the presence of NdFeO3 nanoparticles. The prepared nanocomposite was characterized by transmission electron microscopy and X-ray powder diffraction analysis. The catalytic performance of the Pt-NFO/PA-CH nanocomposite was evaluated for electro-oxidation of methanol through CO stripping voltammetry, cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Durability of the Pt-NFO/PA-CH catalyst was investigated and the effects of several factors such as temperature, scan rate, and methanol concentration were studied for methanol oxidation. Enhanced catalytic performance of Pt-NFO/PA-CH nanocatalyst compared to Pt/PA-CH catalyst recommends its application for methanol electro-oxidation in direct methanol fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call