Abstract

Through precise morphological engineering, novel sea urchin-like spinel NiCo2O4 (NCO) was successfully synthesized and thoroughly investigated as a bifunctional electrode for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In contrast to traditional NCO, the distinctive scattered nanofiber microstructure of NCO prepared via hydrothermal at 100 ℃ (HT100) increases the specific surface area, introduces more oxygen vacancies, reduces the bandgap, enhances the diffusion, adsorption, and dissociation processes of oxygen molecules, thereby promoting rapid electron transfer and augmenting the number of active sites for both ORR and OER. At 800 °C, under the ORR model, NCO-HT100 exhibits an impressive output performance of 920 mW cm−2, surpassing traditional NCO by 47.8 %. Simultaneously, under the OER model, NCO-HT100 achieves a current density of 134.29 mA cm−2. Compared with conventional NCO, sea urchin-like NCO-HT100 displays lower Tafel slopes and overpotentials in alkaline solution at room temperature, indicating superior OER performance. These findings highlight that the sea urchin-like NCO-HT100 stands out as an advanced bifunctional electrode material for both ORR and OER. The insights gained from this research provide pivotal guidance for the future development of multifunctional electrode materials in energy conversion device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.