Abstract

In this work, a series of Ni1-xMx (M = Cr, Mo, W) nanoparticles (NPs) have been successfully synthesized via a simple surfactant-aided co-reduction method and employed as highly efficient and cost effective catalysts for hydrogen generation from aqueous solution of ammonia borane (NH3BH3, AB) at room temperature. It is found that the as-synthesized NiM NPs (M = Cr, Mo, W) exhibit much higher catalytic performance for the hydrolysis of AB as compared to that of pure Ni NPs. In addition, among all the Ni1-xMx (M = Cr, Mo, W) NPs, the Ni0.9Cr0.1, Ni0.9Mo0.1, and Ni0.8W0.2 NPs show the highest catalytic activities with the turnover frequency (TOF) values of 10.7, 27.3 and 25.0 mol H2 (mol metal min)−1, respectively. Remarkably, these optimized NiM catalysts can also perform efficiently in the hydrolysis of hydrazine borane (N2H4BH3, HB). The present low-cost and high-performance of the NiM catalysts system may encourage the practical application of AB and HB as the promising chemical hydrogen storage materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.