Abstract

Conversion of food waste into valuable chemicals under mild conditions has attracted increasing attention. Herein, a series of nano-sized MgAl layered double hydroxides (LDHs) were firstly developed as solid base catalyst for the methyl lactate (MLA) production directly from glucose/food waste. Glucose, which could be easily obtained from cellulose or starch-rich food waste via hydrolysis, was thus selected as the model compound. It is inspiring to find that the metal hydroxide layer in prepared LDHs was highly stable and suitable enlarged interlayer distance was reconstructed owing to in-situ intercalation of formed aromatics during the reaction, which was demonstrated by 27Al magic angle spinning nuclear magnetic resonance and time-of-flight secondary ion mass spectrometry analysis. As a result, in-situ activation of the catalysts along with gradually enhanced catalytic activity was obtained in the recycling runs and the highest MLA yield of 47.6% from glucose was achieved over LDHs (5:1) after 5 runs at 150 °C. Most importantly, the scope was further extended to other typical substrates (e.g. Chinese cabbage and rice) and the results demonstrated the effectiveness of present conversion system for real food waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call