Abstract

Formic acid (FA) was used as a novel additive in bulk heterojunction (BHJ) solar cells, which contains blends of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl]] (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The effect of FA on the performance of PTB7:PC71BM based BHJ solar cells is investigated. By the incorporation of FA, the device with the ratio of 6 vol % shows the best power conversion efficiency (PCE) of 9.04%, along with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) being 24.11 mA/cm2, 0.72 V, and 52.11%, respectively. Experimental results suggest that FA has a strong influence on charge carrier dynamics with a significant increase in Jsc by ∼65% and the dramatically enhanced PCE is mainly due to the increase of absorption and exciton generation of the active layers and the improved charge-carrier mobility of the devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.