Abstract

To increase carrier confinement, the GaN barrier layer was substituted with an AlInGaN quaternary barrier layer which was lattice-matched to GaN in the GaN-InGaN multiple quantum wells (MQWs). Photoluminescence (PL) and high-resolution X-ray diffraction measurements showed that the AlInGaN barrier layer has a higher bandgap energy than the originally used GaN barrier layer. The PL intensity of the five periods of AlInGaN-InGaN MQWs was increased by three times compared to that of InGaN-GaN MQWs. The electroluminescence (EL) emission peak of AlInGaN-InGaN MQWs ultraviolet light-emitting diode (UV LED) was blue-shifted, compared to a GaN-InGaN MQWs UV LED and the integrated EL intensity of the AlInGaN-InGaN MQWs UV LED increased linearly up to 100 mA. These results indicated that the AlInGaN-InGaN MQWs UV LED has a stronger carrier confinement than a GaN-InGaN MQWs UV LED due to the larger barrier height of the AlInGaN barrier layer compared to a GaN barrier layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.