Abstract
The use of active particles for cargo transport offers unique potential for applications ranging from targeted drug delivery to lab-on-a-particle systems. Previously, deployment of metallo-dielectric Janus spherical particles (JPs) as mobile microelectrodes for transport and dielectrophoretic manipulation of cargo has been shown to be singularly controlled via an applied electric field. Herein, we extended this to a metallo-dielectric pollen featuring multiple dielectrophoretic traps associated with its many spikes, and characterized its loading capacities for various cargo sizes and frequencies. When compared to spherical JPs, the active pollen exhibited a significantly enhanced cargo loading capacity due to its multiple dielectrophoretic traps. These findings open new opportunities for application of bio-hybrid particles with diverse and irregular shapes, such as pollen, as efficient cargo carriers, local electroporation and targeted drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.