Abstract
BackgroundWe tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. MethodsFast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and β CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5–7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. ResultsCo-transfection with αCaMKII-pcDNA3/βCaMKII-pcDNA3 increased α and βCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-βCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (−76 % vs. +166 %; 0 % vs. +128 %). α/β CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). ConclusionEnhanced capacity for α/β CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.