Abstract
Butyrate is an important precursor for fine chemicals and biofuels. The aim of this study is to investigate butyrate production as affected by transition metal addition of food waste fermentation including, nickel, Raney nickel and copper particles. Performance of fermentation showed nickel particles achieved the highest butyrate concentration, 7.3 g/L, which was 38.5% higher than that in the control trial. Raney nickel also showed similar effect on the enhancement of butyrate production. However, increased dosage of transition metal particle addition led to decreased butyrate production. The theoretical link between metal-assisted dark fermentation and butyrate production was tentatively explored. Redox potential affected by nickel addition was assumed to be an essential factor for butyrate production. Microbial community analysis found Clostridium sensu stricto 11 may be the dominant functional species for butyrate production. The study demonstrates that development on transition metal catalyst may contribute to waste biorefinery for added value products/energy production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.