Abstract

Thermoelectric (TE) materials are promising in the context of renewable power generation as they can directly convert waste heat into electricity. Although PbTe is the best known TE material, its use is not encouraged due to concerns of environmental toxicity of lead. A combination of modified self-propagating high-temperature synthesis (SHS) and field-assisted sintering technique (FAST) is employed for the very first time to synthesize a solid solution of PbTe and SnTe. We show that doping of Pb0.6Sn0.4Te with Mg breaks crystal mirror symmetry and opens up band gap. This results in suppression of bipolar diffusion. Also the increase in degeneracy of valence sub-bands improves Seebeck coefficient. Both these synergistically leads to remarkable enhancement in figure of merit ZT (∼2 at 840 K) and ZTavg (∼1.2 between 500 and 840 K) rendering it into high-performance thermoelectric material by successfully engineering electronic structure. Most importantly, the ZT here is comparable to that of Mg-doped PbTe b...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.