Abstract

Bismuth vanadate (BiVO4) is a promising photoanode material for photoelectrochemical (PEC) water oxidation. However, its performance is greatly hindered by poor bulk and interfacial charge transfer. Herein, to address this issue, iron doped vanadyl phosphate (Fe:VOPO4) was grafted on molybdenum doped BiVO4 (Mo:BiVO4) for significantly enhancing charge transfer and oxygen evolution kinetics simultaneously. Consequently, the resultant Fe:VOPO4/Mo:BVO4 photoanode exhibits a remarkable photocurrent density of 6.59 mA cm−2 at 1.23 V versus the reversible hydrogen electrode (VRHE) under AM 1.5G illumination, over approximately 5.5 times as high as that of pristine BiVO4. Systematic studies have demonstrated that the hopping activation energy of small polarons is significantly reduced due to the Mo doping, resulting in accelerated bulk charge transfer. More importantly, the deposition of Fe:VOPO4 promotes the interfacial charge transfer between Mo:BiVO4 and Fe:VOPO4 via the construction of V−O−V and P−O bonds, in addition to facilitating water splitting kinetics. This work provides a general strategy for optimizing charge transfer process, especially at the interface between photoanodes and cocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.