Abstract

This paper considers a family of Vehicle Routing Problem (VRP) variants that generalize the classical Capacitated VRP by taking into account the possibility that vehicles differ by capacity, costs, depot allocation, or even by the subset of customers that they can visit. This work proposes a Branch-Cut-and-Price algorithm that adapts advanced features found in the best performing exact algorithms for homogeneous fleet VRPs. The original contributions include: (i) the use of Extended Capacity Cuts, defined over a pseudo-polynomially large extended formulation, together with Rank-1 Cuts, defined over the Set Partitioning Formulation; (ii) the concept of vehicle-type dependent memory for Rank-1 Cuts; and (iii) a new family of lifted Extended Capacity Cuts that takes advantage of the vehicle-type dependent route enumeration. The algorithm was extensively tested in instances of the literature and was shown to be significantly better than previous exact algorithms, finding optimal solutions for many instances with up to 200 customers and also for some larger instances. A new set of benchmark instances is also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.