Abstract

Brain storm optimization algorithm (BSO) is a popular swarm intelligence algorithm. A significant part of BSO is to divide the population into different clusters with the clustering strategy, and the blind disturbance operator is used to generate offspring. However, this mechanism is easy to lead to premature convergence due to lacking effective direction information. In this paper, an enhanced BSO algorithm based on modified Nelder–Mead and elite learning mechanism (BSONME) is proposed to improve the performance of BSO. In the proposed BSONEM algorithm, the modified Nelder–Mead method is used to explore the effective evolutionary direction. The elite learning mechanism is used to guide the population to exploit the promising region, and the reinitialization strategy is used to alleviate the population stagnation caused by individual homogenization. CEC2014 benchmark problems and two engineering management prediction problems are used to assess the performance of the proposed BSONEM algorithm. Experimental results and statistical analyses show that the proposed BSONEM algorithm is competitive compared with several popular improved BSO algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.