Abstract

The double postnatal stress model (brief maternal separation plus sham injection daily applied from birth to weaning) induces metabolic alterations similar to type 2 diabetes in young-adult male mice. We verify whether 1) the stress also induces brain metabolic-functional alterations connected to diabetes and 2) different alterations are modulated selectively by two stress-damaged endogenous systems (opioid- and/or ACTH-corticosteroid-linked). Here, diabetes-like metabolic plus neurophysiologic-neurometabolic parameters are studied in adult mice following postnatal stress and drug treatment. Surprisingly, together with 'classic' diabetes-like alterations, the stress model induces in young-adult mice significantly enhanced brain neurometabolic-neurophysiologic performances, consisting of decreased latency to flash-visual evoked potentials (- ~8%); increased level (+ ~40%) and reduced latency (- ~30%) of NAD(P)H autofluorescence postsynaptic signals following electric stimuli; enhanced passive avoidance learning (+ ~135% latency); and enhanced brain-derived neurotrophic factor level (+ ~70%). Postnatal treatment with the opioid receptor antagonist naloxone prevents some alterations, moreover the treatment with antisense (AS; AS vs proopiomelanocortin mRNA) draws all parameters to control levels, thus showing that some alterations are bound to endogenous opioid-system hyper-functioning, while others depend on ACTH-corticosterone system hyper-functioning. Our stress model induces diabetes-like metabolic alterations coupled to enhanced brain neurometabolic-neurophysiologic performances. Taken all together, these findings are compatible with an 'enduring acute-stress' reaction, which puts mice in favorable survival situations vs controls. However, prolonged hormonal-metabolic imbalances are expected to also produce diabetes-like complications at later ages in stressed mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.