Abstract
Gold-rare earth (Au-RE) alloys with equiatomic compositions are prepared by arc (RE = Dy, Ho, Y) or induction (RE = Sm) melting. Morphology and phase composition is assessed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDXS), while X-ray powder diffraction (XRPD) is used to confirm crystal structures. The Au-RE electrodes are evaluated for borohydride oxidation reaction (BOR) in alkaline media employing cyclic voltammetry and chronoamperometry. The obtained data allows calculation of kinetic parameters that characterize the borohydride (BH4-) oxidation at Au-RE alloys, including the number of exchanged electrons, n, and the anodic charge transfer coefficient, α. n values range from 2.4 to 4.4, while α values are found to be in the 0.60–0.83 range. The BOR apparent activation energy, Eaapp, and the reaction order, β, are also determined from CV data obtained at different temperatures and different BH4- concentrations, respectively. Low Eaapp values range from 16.4 (Au-Sm) to 20.2 kJ mol−1 (Au-Y) and β values suggest that BOR at the examined alloys is a 1st order reaction with respect to BH-4 concentration. A small-scale direct borohydride-peroxide fuel cell (DBPFC) operating with Au-Y anode at 25 °C reaches a peak power density of 150 mW cm−2. The cell performance is enhanced when increasing the temperature to 45 °C, with a maximum power density of 215 mW cm−2 being attained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.