Abstract

We report electronic-structure and lattice dynamics calculations on selected III-VII, ${\text{IV-VII}}_{2}$, and ${\text{V-VII}}_{3}$ compounds. The common characteristic of these largely ionic compounds is that their outmost cation-$s$ states are fully occupied and thus the conduction-band states are derived from the more spatially extended cation-$p$ states, resulting in significant cross-band-gap hybridization, which enhances Born effective charges substantially. The large Born charges cause large splitting between longitudinal and transverse optic phonon modes and large static dielectric constants resulting mostly from the lattice contribution. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and recombination centers and may therefore have positive effects on the carrier transport properties in radiation detectors based on these soft-lattice halides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.