Abstract

Tissue-engineered scaffolds acted as active natural extracellular matrices that allowed for cell attachment, migration, proliferation, and differentiation. To enhance the drug loading, degradation control, and mechanical features of tissue-engineered scaffolds used in bone regeneration applications, we synthesized novel poly(trimethylene carbonate) (PTMC)/modified HA nanoparticles (KHA NPs, modified by silane coupling agent)/vancomycin hydrochloride (VH) porous microspheres scaffold. The fabricated PTMC/KHA/VH scaffold has unique surface corrosion degradation, excellent surface properties, and high cytocompatibility. The novel PTMC/KHA/VH scaffold was characterized by 42% porosity, 100μm pore size, and 208.2MPa compressive modulus. After the treatment of a rat femur defect for 4, 8, and 12 weeks, the surface corrosion biodegraded of the PTMC/KHA/VH scaffold remarkably decreased inflammation response and promoted bone regeneration, suggesting its use as a bioactive structure in bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.