Abstract

Before the preparation of MoSi2–CrSi2–SiC–Si coating, blasting treatment of carbon/carbon (C/C) composites, as a surface modification method, was conducted under oxyacetylene torch. MoSi2–CrSi2–SiC–Si coating was prepared on the treated C/C composites by pack cementation, where an interlock interface was formed between the coating and the C/C substrate. After blasting treatment, the thermal expansion coefficient mismatch between the coating and C/C substrate was alleviated efficiently, and the bonding strength of the coating was increased by 45.6% and reached 26.2MPa. To simulate the real working condition, thermal cycling test was conducted under oxyacetylene torch from 1600°C to room temperature to construct an environment of combustion gas erosion. Due to the improvement of bonding strength and the alleviation of thermal expansion coefficient mismatch between the coating and the C/C substrate, thermal cycling performance of MoSi2–CrSi2–SiC–Si coating was enhanced. After 25 thermal cycles, the mass loss of the coated C/C composites without blasting treatment was up to 2.4%, and the C/C substrate was partially exposed. In contrast, the mass loss of the coated C/C composites with blasting treatment was only 1.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.