Abstract

We studied the nucleation of gold clusters on TiO2(110) surfaces in three different oxidation states by high-resolution scanning tunneling microscopy. The three TiO2(110) supports chosen were (i) reduced (having bridging oxygen vacancies), (ii) hydrated (having bridging hydroxyl groups), and (iii) oxidized (having oxygen adatoms). At room temperature, gold nanoclusters nucleate homogeneously on the terraces of the reduced and oxidized supports, whereas on the hydrated TiO2(110) surface, clusters form preferentially at the step edges. From interplay with density functional theory calculations, we identified two different gold-TiO2(110) adhesion mechanisms for the reduced and oxidized supports. The adhesion of gold clusters is strongest on the oxidized support, and the implications of this finding for catalytic applications are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.