Abstract

In this work, we consider the possibility of enhancing terahertz bolometric detection efficiency using resonant structures in the case of an inclined incidence of radiation. The structures are made of a sequence of doped and undoped semiconductors, including epsilon-near-zero areas. Undoped regions act as electromagnetic resonators, thus ensuring resonant signal penetration through the opaque (doped) regions of the structure. A set of epsilon-near-zero areas can ensure substantial enhancements to the electric field in the material. In the doped regions, absorption occurs. The structure described above can provide efficient resonant energy absorption for a wide range of angles of incidence. The numerical calculations based on the solution of the Helmholtz equation have shown that the studied resonant structures ensure the absorption of up to 50% of the incident radiation energy for a 60-degree incidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.