Abstract
In this study, the effect of conductive additives on co-digestion of fat, oil, and grease (FOG) and food waste (FW) was evaluated. Initially, biochemical methane potential (BMP) test was conducted for optimization of mixing ratio of FW and FOG. The optimal methane production (800 L (kg VS)−1) was obtained from co-digestion of 70% FW + 30% FOG (w/w), which was 1.2 times and 12 times of that obtained from mono-digestion of FW and FOG, respectively. This optimal mixing ratio was used for subsequent fed-batch studies with the addition of two conductive additives, granular activated carbon (GAC) and magnetite. The addition of GAC significantly shortened the lag phase (from 7 to 3 d), reduced accumulation of various volatile fatty acids (VFAs), and enhanced methane production rate (50–80% increase) compared to the control and magnetite-amended bioreactor. Fourier transformation infrared (FTIR) analysis suggested that the degradation of lipids, protein and carbohydrates was the highest in GAC amended reactor, followed by magnetite and control reactors. GAC addition also enriched more abundant and diverse bacteria and methanogens than control. Magnetite addition also showed similar trends but to a lesser degree. The substantial enrichment of syntrophic LCFA β-oxidizing bacteria (e.g. Syntrophomonas) and methanogenic archaea in the GAC-amended bioreactor likely attributed to the superior methanogenesis kinetics in GAC amended bioreactor. Our findings suggest that the addition of GAC could provide a sustainable strategy to enrich kinetically efficient syntrophic microbiome to favor methanogenesis kinetics in co-digestion of FW and FOG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.