Abstract
Many soils in sub-Saharan Africa, which are farmed by smallholders, are P deficient and highly P fixing. Furthermore, P inputs supplied as farmyard manure (FYM) or inorganic P fertilizer are normally too small to replace P offtakes by crops. Consequently most soils are in a negative P balance, which is reflected in small, and often declining, crop yields. The obvious solution of simply applying adequate P is seldom an option due to shortages of manure, which is usually low in nutrients in any case, and the high cost of inorganic P fertilizer relative to the likely cash value of the harvest. Our aim was to see if we could devise practical methods to increase soil P availability in this situation and to investigate the mechanisms involved. Two approaches were adopted. Firstly, to attempt to saturate the P-fixing sites in the soils by applying a large annual application of P (75 kg P ha −1), which should serve for several seasons. Secondly, to attempt to keep the fertilizer P in biological forms by supplying fertilizer P and cattle manure (FYM) in combination. Here, the aim was to promote the cycling of P through the soil microbial biomass and associated metabolite pools, with the expected result of decreasing P fixation and increased plant availability of this P. These treatments were investigated using two field sites on smallholder farms in Kenya: one, considered a ‘high P fixing’ soil at Malava (Kakamega District) and one considered a ‘low P fixing’ soil at Mau Summit (Nakuru District). The following treatments were applied in 1997 and 1998: nil; 75 kg P ha −1 as super phosphate (P); 25 kg P ha −1; FYM at 1.9 t ha −1 dry matter; FYM+25 kg P ha −1. All treatments also received 100 kg inorganic N ha −1. Maize was the test crop. There was no significant correlation in either year at either site between soil P, measured as NaHCO 3-extractable P, resin P or NaOH-extractable P and maize yield. However, the different soil P fractions were closely correlated with each other. Yields at the high P rate (75 kg ha −1y −1) were often little better than the control. There was, however, a significant positive relationship ( P<0.05) between soil microbial biomass P and crop yield, again at both sites and in both years. The treatment giving the best yield and the largest biomass P was always FYM+P. Our results indicate that the combined use of organic and inorganic fertilizers in these low input systems may promote increased biological cycling, enhanced availability and consequently improved plant uptake of soil and fertiliser P, to the advantage of the small scale farmer. The results also indicate that biomass P measurements may provide a better indicator of soil P availability in these soils than some more conventional chemical extractants. However, both findings require further evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.