Abstract
Xylose residue (XR), the abundant industrial residue from commercial xylose production, was delignified using alkali as a substrate for ethanol production via simultaneous saccharification and fermentation (SSF). It was found that pretreatment with 1.5% (w/v) NaOH at 140 °C for 1.5 h was optimal for delignification efficiency (72.2%) and low cellulose loss (7.1%). The physical changes in samples after alkaline pretreatment were characterized for crystallinity and imaged using scanning electron microscopy (SEM), which demonstrated that the surface of samples became coarser with lignin removal. There were rather significant changes in cellulose crystallinity. The widespread accessibility of cellulose in XR favored enzymatic hydrolysis and achieved considerable bioconversion (98.8% with 15 PFU/g substrate). The maximum for ethanol concentration using SSF bioconversion reached 16.3 g/L, which was about four times more than that of the untreated sample. XR treated using the processes of alkaline pretreatment and SSF was an excellent substrate for bioconversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.